Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry
نویسندگان
چکیده
منابع مشابه
Mixed Finite Element Methods for Linear Viscoelasticity Using Weak Symmetry
Small deformations of a viscoelastic body are considered through the linear Maxwell and Kelvin-Voigt models in the quasi-static equilibrium. A robust mixed finite element method, enforcing the symmetry of the stress tensor weakly, is proposed for these equations on simplicial tessellations in two and three dimensions. A priori error estimates are derived and numerical experiments presented. The...
متن کاملMixed finite element methods for linear elasticity with weakly imposed symmetry
In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger–Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been...
متن کاملA new elasticity element made for enforcing weak stress symmetry
We introduce a new mixed method for linear elasticity. The novelty is a simplicial element for the approximate stress. For every positive integer k, the row-wise divergence of the element space spans the set of polynomials of total degree k. The degrees of freedom are suited to achieve continuity of the normal stresses. What makes the element distinctive is that its dimension is the smallest re...
متن کاملA Mixed Nonconforming Finite Element for Linear Elasticity
This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the displacement by piecewise constants. We establish (h) error bound in the (broken...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2020
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2019.12.004